3.823 \(\int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx\)

Optimal. Leaf size=232 \[ \frac {(a-b) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(a-b) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {(a+b) \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {2 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{d \left (a^2+b^2\right )} \]

[Out]

-1/2*(a+b)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/2*(a+b)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2)
)/(a^2+b^2)/d*2^(1/2)+1/4*(a-b)*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/4*(a-b)*ln(1+c
ot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+2*arctan(a^(1/2)*cot(d*x+c)^(1/2)/b^(1/2))*a^(1/2)*b^(
1/2)/(a^2+b^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 232, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3673, 3572, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ \frac {(a-b) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(a-b) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {(a+b) \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {2 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])),x]

[Out]

((a + b)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*ArcTan[1 + Sqrt[2]*Sqrt[Co
t[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/((a^2
 + b^2)*d) + ((a - b)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - ((a - b)
*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3572

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[(d*(b*c
- a*d))/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3673

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx &=\int \frac {\sqrt {\cot (c+d x)}}{b+a \cot (c+d x)} \, dx\\ &=\frac {\int \frac {a+b \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx}{a^2+b^2}-\frac {(a b) \int \frac {1+\cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac {2 \operatorname {Subst}\left (\int \frac {-a-b x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {(a b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {(2 a b) \operatorname {Subst}\left (\int \frac {1}{b+a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {(a+b) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac {2 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\left (a^2+b^2\right ) d}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac {2 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\left (a^2+b^2\right ) d}+\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}\\ &=\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\left (a^2+b^2\right ) d}+\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.17, size = 204, normalized size = 0.88 \[ \frac {24 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )+3 \sqrt {2} a \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )-3 \sqrt {2} a \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )+6 \sqrt {2} a \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-6 \sqrt {2} a \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )-8 b \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )}{12 d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])),x]

[Out]

(6*Sqrt[2]*a*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 6*Sqrt[2]*a*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + 24*
Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]] - 8*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1
, 7/4, -Cot[c + d*x]^2] + 3*Sqrt[2]*a*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - 3*Sqrt[2]*a*Log[1 +
 Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(12*(a^2 + b^2)*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )} \sqrt {\cot \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*tan(d*x + c) + a)*sqrt(cot(d*x + c))), x)

________________________________________________________________________________________

maple [C]  time = 1.48, size = 1859, normalized size = 8.01 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x)

[Out]

-1/2/d*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x
+c))/sin(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))*(-(a^2+b^2)^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c)
)/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a+(a^2+b^2)^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))
^(1/2),1/2-1/2*I,1/2*2^(1/2))*b-(a^2+b^2)^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/
2*I,1/2*2^(1/2))*a+(a^2+b^2)^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/
2))*b+(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^3-(a^2+
b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b^3+(a^2+b^2)^(1/2)*
EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^3-(a^2+b^2)^(1/2)*EllipticPi(
((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b^3+2*a^3*EllipticPi(((1-cos(d*x+c)+sin(d*
x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*b+2*a*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d
*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*b^3-2*a^3*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^
(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b-2*a*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),-a/
(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^3+2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+
b^2)^(1/2)),1/2*2^(1/2))*b^2*(a^2+b^2)^(1/2)*a-2*a^2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),-
a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b*(a^2+b^2)^(1/2)+2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1
/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^2*(a^2+b^2)^(1/2)*a+(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin
(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*b-(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/
sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a*b^2+(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c
))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*b-(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),
1/2+1/2*I,1/2*2^(1/2))*a*b^2-I*(a^2+b^2)^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2
*I,1/2*2^(1/2))*a-I*(a^2+b^2)^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1
/2))*b-I*(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^3-I*
(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b^3+I*(a^2+b^2)
^(3/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a+I*(a^2+b^2)^(3/2)*Elli
pticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b+I*(a^2+b^2)^(1/2)*EllipticPi(((1-
cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^3+I*(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c
)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b^3-2*a^2*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x
+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*b*(a^2+b^2)^(1/2)+3*I*(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c
)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*b+3*I*(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin
(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a*b^2-3*I*(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+
c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*b-3*I*(a^2+b^2)^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/s
in(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a*b^2)/sin(d*x+c)^3/(cos(d*x+c)/sin(d*x+c))^(1/2)*2^(1/2)/(a^2+b^2)^(3
/2)/(a+b+(a^2+b^2)^(1/2))/(-b+(a^2+b^2)^(1/2)-a)

________________________________________________________________________________________

maxima [A]  time = 0.81, size = 174, normalized size = 0.75 \[ \frac {\frac {8 \, a b \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{2} + b^{2}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a - b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a - b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{2} + b^{2}}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/4*(8*a*b*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^2 + b^2)*sqrt(a*b)) - (2*sqrt(2)*(a + b)*arctan(1/2*sq
rt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)
))) + sqrt(2)*(a - b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(a - b)*log(-sqrt(2)/sqrt
(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^2 + b^2))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))),x)

[Out]

int(1/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(1/2)/(a+b*tan(d*x+c)),x)

[Out]

Integral(1/((a + b*tan(c + d*x))*sqrt(cot(c + d*x))), x)

________________________________________________________________________________________